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An Automatic Tuning Method of
a Fuzzy Logic Controller
for Nuclear Reactors

Pramath Ramaswamy, Robert M. Edwards, and Kwang Y. Lee

Abstract—The design and evaluation by simulation of an
automatically tuned fuzzy logic controller is presented. Typi-
cally, fuzzy logic controllers are designed based on an expert’s
knowledge of the process. However, this approach has its limita-
tions in the fact that the controller is hard to optimize or tune to
get the desired control action. A method to automate the tuning
process using a simplified Kalman filter approach is presented
for the fuzzy logic controller to track a suitable reference trajec-
tory. Here, for purposes of illustration an optimal controller’s
response is used as a reference trajectory to determine automa-
tically the rules for the fuzzy logic controller. To demonstrate
the robustness of this design approach, a nonlinear six-delayed
neutron group plant is controlled using a fuzzy logic controller
that utilizes estimated reactor temperatures from a one-delayed
neutron group observer. The fuzzy logic controller displayed
good stability and performance robustness characteristics for a
wide range of operation.

1. INTRODUCTION

N observer-based optimal state feedback controller

was developed to achieve improved temperature per-
formance for a wide range of operating conditions through
use of a relatively simple low order time-invariant con-
troller [1]-[3]. The design of an observer and optimal
controller is in general based on an assumed linear model
that is an approximate representation of an otherwise
nonlinear plant. Moreover, the controller takes precise
measurements of plant variables and generates a precise
control variable. As an alternative to this model-based
controller design, this paper considers fuzzy logic, which
neither relies on an accurate description of the plant, nor
on the precise measurements. An introduction to the
fundamental concepts of fuzzy logic has been given by
Zadeh [4].
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Most existing fuzzy logic controllers are designed with-
out the use of any mathematical model of the underlying
process [5]. These controllers are generally based on an
expert’s understanding of the process. Improved perfor-
mance of important process variables is not usually a
priority when fuzzy logic controllers are developed in this
manner. Another approach that has been considered is to
design a controller based on the knowledge obtained of
the system from repeated simulations conducted on a
mathematical model [6]. In either case, the rule base of
the fuzzy logic controller has to be fine-tuned or cali-
brated using trial and error in order to obtain the desired
performance.

The development and application of a fuzzy logic con-
troller for improving reactor temperature performance in
a robust manner is presented, Fig. 1. A unique aspect of
this controller is that it uses a simple low-order observer
estimate of the reactor temperature as the primary feed-
back signal rather than the full state feedback signal.
Furthermore, a method of automatically tuning this fuzzy
logic controller’s critical parameters to achieve a desirable
reactor temperature response has also been developed.
For illustration purpose an observer-based optimal state
feedback controller is used as a possible reference model
for the desired response. The unknown parameters in the
fuzzy logic controller rule base are determined using the
Kalman filter algorithm.

In earlier work [6], robustness was demonstrated by
considering the effect of process and measurement noise
for a model linearized about the full power operating
point. In [5], observations on the effect of high frequency
noise, and other considerations such as initial conditions,
changing rod worth, and sensor failures are reported.
Performance of the fuzzy logic controller is demonstrated
for a wide range of reactor operations over the power
range of 10-100% and with significant plant parameter
variations. This demonstration is conducted by applying
the fuzzy-logic controller with a temperature estimate
based on a simple one-delayed neutron group to a higher
order nonlinear plant simulation with six-delayed neutron
groups.

Section II provides general information on the design
of a fuzzy logic controller. The algorithm for automating
the fine tuning of the fuzzy logic controller is discussed in
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Fig. 1. Fuzzy logic controller using estimated temperature as feedback.

Section III. Section IV presents the fuzzy logic controller
as designed for a nuclear reactor. The results that were
obtained from the simulations are presented in Section V
and conclusions are given in Section VL

II. Fuzzy LoGic CONTROLLER

In practice, it is not always easy to describe a system by
means of a precise model so as to realize ideal optimal
compensation. Thus, systems are usually controlled by
other less capable control algorithms. Such systems can-
not easily cope with a varying control environment or a
system nonlinearity [7].

Model Reference Adaptive Control (MRAC) is an
approach for coping with environmental variations and
system nonlinearities. In this method, the controller’s
parameters are adjusted using suitable adaptive laws so
that the system behaves like the reference model. The
difficulty with this approach is the formulation of the
input—output relationship by means of precise mathemati-
cal models. When such models are developed, they may
be too computation-intensive for a real-time solution [7].

The fuzzy logic is, however, based on intuition and
experience, and can be regarded as a set of heuristic
decision rules or “rules of thumb.” One of the most
interesting applications of fuzzy logic [4] was the develop-
ment of the fuzzy logic controller. A fuzzy logic controller
is shown in Fig. 2, which consists of:

1) A rule base which contains a number of control
rules.

2) A database which defines the membership functions
of the linguistic terms used in the rule base.

3) An inference mechanism based on the control rules.

4) A fuzzification unit to map real inputs from sensors
into the fuzzy terms.

5) A defuzzification unit to map fuzzy outputs of the
inference mechanism to real numbers.

A fuzzy logic controller uses a set of control rules and
an inference mechanism to determine the control action
for a given process state, Fig. 2. The control rules are
fuzzy expressions that relate the fuzzy process variables
(controller inputs) to the fuzzy controller outputs. The
inference mechanism evaluates the rule base to find the
appropriate control action.
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A. Rule Base

A fuzzy control action consists of situation and action
pairs. Conditional rules expressed in IF and THEN state-
ments are generally used. Here, the IF portion is the
ANTECEDENT, and the THEN portion is the CONSE-
QUENT. There are generally two kinds of fuzzy rules that
are used in fuzzy logic controllers:

1) rules whose consequents are fuzzy sets,
2) rules whose consequents are parameterized func-
tions.
The First Type: To illustrate the two cases consider a
fuzzy controller based on a rule base as follows:

D

where x; and x, are process variables (inputs to the
controller) such as “error,” and “change in error” respec-
tively, and u is the “input to the plant.” Here A4,, A4,, and
B, are fuzzy sets defined on the input space (of x, and
x,) and output space (of u), respectively. This rule may be
further simplified by reducing the consequent B, to a
fuzzy singleton

IF x, is Ay, x, is A4,, THEN u is B,,

THEN u is 1.15. 2)

This simple rule may be interpreted as “if the error is
small negative and the change in error is large negative,
then the input to the plant is 1.15.” Although in this
example x, and x, are connected by logical and for
simplicity, the logical or may also be used in conjunction
with the logical and.

The Second Type: In this approach proposed by Takagi
and Sugeno [7], the fuzzy controller consists of a number
of rules which are written as:

IFf(xl iS Al,"', xk iS Ak)’

IF x, is Ay, x, is A,,

THEN y = g(x,,"*, x;),
3)

where

y variable of the consequent whose value is inferred.

x; variables of the premise that also appear in the
consequent.
A; fuzzy sets with linear membership functions repre-

senting a fuzzy subspace in which the above IF-
THEN rule can be applied.

f  logical functions connecting the propositions in
the premise.

g  function that implies the value of y when x;, -+, x,,
satisfy the premise.

The consequent (the outputs, or drive) used in this
method are parameterized functions of the input vari-
ables. To apply rules like this to fuzzy algorithms for
process control, the variables of the premise and the
consequent are defined as the following:

Error (E) = process output — set point
Error change (DE) = current error — last error
Controller output = input applied to process.
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Inference Mechanism

Rule Base
(real input) Fuzzify i Y De . |(real output)
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Fig. 2. Internal structure of a fuzzy logic controller.

The domain of a variable, E or DE, is partitioned into
fuzzy sets, A;, i = 1,2---. Every fuzzy set A, is associated
with a name that represents qualitative statements, e.g.,
for i = 1,2,---,5, A, = large negative (LN), A, = small
negative (SN), A, = zero (ZE), A, = small positive (SP),
and A5 = large positive (LP). In general i is not limited
to 5. In a rule base of the second type, where the conse-
quent of a rule is a parameterized function of the input
variables, f;; is an abbreviation of f(x, is 4;, x, is A)),
for all possible i, j. An example of a rule from this rule
base is

IF error (E) is large negative (i = 1) and the change in
error (DE) is small negative (j = 2),

then the output is

=u,=c) +chLE +c,DE, 4)

fo

where the subscripts represent Rule,.

B. Membership Functions

In the area of control, the definition of membership
functions follows two different approaches: Either 1) one
defines the functions and identifies the system parame-
ters, or 2) one works with a given system and identifies the
membership function under the controlled process [9]. In
this work method 1) is followed.

Generally, there is no restriction on the shape of a
membership function. However, triangular, bell-shaped,
or the monotonic linear functions, are usually adopted in
the formulation of the membership function.

Several functions exist in the literature for generalized
membership functions. Recently, a new class of member-
ship function has been proposed by Dombi [9]. This func-
tion can be described with only four parameters, and they
are easy to determine. The first two define the interval
[a, b], A is the sharpness, and v determines the inflection
point of the S-shaped functions. The resulting member-
ship functions consist of the monotonically increasing
function

a-»"""'x-a*
- x-a)+ b -0

u(x) =

x € [a,b], (52)

and the monotonically decreasing function
a-»""b-x"
a-)'b -0+ -

x € [a,b].

w(x) =

(5b)

If A =1, then the two equations reduce to the lin-
ear form. The linear form will be used throughout this
discussion, Fig. 3.

Membership functions are generally chosen to be suf-
ficiently wide and to reduce sensitivity to noise. Therefore
the choice of the membership function may also play a
role in the robustness of the controller [10].

C. Fuzzification

The strategy that has been most commonly used in
control applications is that in fuzzification a measured
value is converted into a fuzzy singleton within a universe
of discourse. In this method, the measurement x, is
interpreted as belonging to a fuzzy set 4 with a member-
ship function u(x), where u(x,) = 1. This simplified
approach is also used in this work.

D. Defuzzification

Defuzzification is mapping the space of fuzzy control
actions defined over an output universe of discourse into
a space of nonfuzzy control actions. The defuzzifier is
essential because most real processes that require control
need real inputs. Several strategies exist at present: the
mean of the maximum, the centroid of area, and the fuzzy
mean. Each approach has its advantages [11]. In this work,
the defuzzification strategy that is used to form the output
(u,) of the fuzzy logic controller is the weighted average
of the individual rule outputs u;;. This is most convenient
when using rules of the second type, i.e., the output of
each rule is a parameterized function of inputs as shown
in (4).

The p;; attached to each u;; is the weight attached to
each rule ij; and

My = I‘LA,(E) A I'LA]-(DE)’ (6)

or

Hij = IJ«A,.(E) X MAj(DE), (7)
where A;, A; are generic terms for the fuzzy linguistic
sets or qualitative statements like large negative (LN)
defined for E and DE. The multiplicative weights (X) are
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Fig. 3. Membership functions for error (E) and change in error (DE).

preferred over the min (A) because of their smoothness
properties.
The output of the controller is therefore:

m n
im1 Ljoy Ml
u ==

(4 m n
i=1 Z,-=1 Hij

®

ITI. AN AuTOMATIC TUNING METHOD FOR THE
Fuzzy LoGic CONTROLLER

Most existing fuzzy logic controllers are designed with-
out using any mathematical model of the underlying pro-
cess. The construction procedures are generally based on
the experts’ understanding of the process and do not
involve any detailed mathematical descriptions. There-
fore, the rule base of a fuzzy logic controller must be
adjusted through trial and error to obtain the desired
performance.

In this section, an automatic tuning method (ATM)
for the fuzzy logic controller is presented. In the pro-
posed method, the fuzzy logic controller uses parame-
terized output functions as the consequents to rules. These
parameters permit the use of numerical algorithms to
modify the output of the controller. In this approach,
phase-space based information about the system’s global
behavior is used to determine the controller output func-
tion parameters [12]. Input-output data (input to con-
troller, actual controller output, and the desired controller
output) are used to fine tune the controller by estimating
the parameters of the consequents of the rules through an
application of the Kalman filter algorithm.

Recall from (4) that the control action for any Rule;;,
consists of an if situation then action pair. IF error (E) i is
A; and the change in error (DE) is A;, THEN the output
is of the form:

fiy =wj=cj+clE + c}DE. )]
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The consequent here is f;,(E, DE) and the constants c’ i»
1=0,1,2, are the parameters to be modified to optimize
or to calibrate the fuzzy logic controller.

In general, each control rule determines a particular
control law f;(-) for the region of space delimited by the
antecedent’s fuzzy sets. For the f;,(-) as defined above,
ie., f;;,(E, DE) where E is the process error, and DE is
the change in error, the controller can be viewed as a
proportional-derivative (P-D) controller with an offset
[12]. However, unlike the classical P-D controller, the
fuzzy logic controller utilizes a number of P-D con-
trollers simultaneously as a weighted average defined by
equation (8).

A. Output Function Parameter Modification

The if part of the fuzzy logic controller defines the
phase-space over which the rule operates. The then part
of the rule defines the control action to be taken by the
controller in that region. Once a rule base is specified, the
modification of the output or the consequent functions of
the control rules is done through setting the parameters
cl. ; based on the input-output data. Each element of the
input—output data set consists of actual inputs to the
controller (E(k), DE(k)), the actual outputs of each Rule;;
of the controller (u;;(k)), and the desired output of the
controller (d(k), where  is the discrete-time element of
the input—output data set). To fine tune the controller
so that it meets the desired control policy, the c/; ; are
identified from the non-zero measures w,(E(k)) and
Ha (DE(k)) of the error and the change in error for the
process and they are adjusted to minimize the mean-
squared error between the actual and a desired output
d(k), such as a reference model output. The algorithm
approximates the parameters c that minimize the mean-
square error (MSE) of the output of the controller with
respect to the desired output d(k). For this purpose the
following automatic tuning method (ATM) is considered
using the Kalman filtering.

B. Automatic Tuning Method

The consequent u;i(k) of each rule of the controller
has the form c, E(k) + ¢/, DE(k). The offset c)
known, and it 1s elther the steady-state controller output
or it is the desired output when the error and the change
in error are zero. Thus, the resulting parametric equation
simplifies to

u;;(k) = c® + c;E(k) + c;DE(k), (10)
where cj; and ¢} are the only unknowns. To find these
unknowns, the Kalman filter approach [13], which is a
recursive filter algorithm, is taken because the Kalman
filter estimates are the optimal mean-squared error esti-
mates. Also, in a recursive filter there is no need to store
past measurements for the purpose of computing present
estimates. In order to apply the Kalman filtering, the
unknown parameters c/ ;j are viewed as state variables, the
premise variables E(k) and DE(k) as time-varying system
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coefficients, and the u;;(k) as the system output variables.
Then, the dynamics of the c! ; can be modeled simply as a
stochastic system in discrete-time:

System Model:

G| [0 1] Ak-n|" [l]w(""”

wi ~ N(0, ). (11)

Measurement Model:

cij(k)

] +y +c° (12)

v, ~ N(0,0), R = oo,

where w, and v, are process and measurement noise,
respectively, with normal distribution. In this formulation,
the process noise is assumed to be completely unknown
and the measurement model is assumed to have zero
measurement noise. The parameters are unknown con-
stants and therefore their changes at steady-state are
zero. Also, the variances of the two parameters are uncor-
related. From these initial assumptions for the system
model, the Kalman filtering problem can be easily solved
[13] to give the steady-state solution for the parameters
i,

IV. Fuzzy LoGic CONTROLLER FOR NUCLEAR

REACTOR

The basic design approach is to place the fuzzy logic
controller as the outermost controller as shown in Fig. 1.
In this way, the embedded classical controller can be
retained to facilitate incremental upgrades to existing
plants. However the embedded classical controller is
optional and the fuzzy logic controller can be designed
with or without the embedded classical control loop.

The verification testing of the fuzzy logic controller is
conducted via simulation where the simulated plant is a
continuous-time model whose nonlinear equations are
solved via numerical integration using the advanced con-
tinuous simulation language (ACSL) [14]. The fuzzy logic
controller is simulated as a discrete or sampled-data con-
troller which communicates with the simulated plant ten
times per second.

A. Nuclear Reactor Model

To demonstrate the fuzzy logic controller configuration
discussed in this paper, a simple simulation model of a
pressurized water reactor (PWR) was used. The model
assumes point kinetics with six delayed neutron groups
and temperature feedback from lumped fuel and coolant
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temperature calculations which are summarized as follows

[1]1-[3]):
dn, 6&p— B 16

= + — C.; 3
dt A nr A i; Blcrl7 (133)
dc,;
e A, — Ay, i=1-G, (13b)
dT,  f;P, 9) Q Q
Ly — T+ —T,+ T, (130
ety Beto 2uy o 20
dT, (1 —f,)P, Q QM + Q)
__._l = _.__]_cunr + ___]} — __..._...__T[
dt e IT% 2p,
oM - Q)
—T, (13d)
2p,
dop, GZ (
& = GZn 13e)
a (T, — Ty,)
8p = 8p, + ap(T; — Tp) + —12—10
a (T, = T,)
TR (13f)

2

The model (13) represents a nonlinear system. The
model is nonlinear because reactivity 6p multiplies the
relative reactor power state variable n, as seen in (13a).
Reactivity includes the control rod reactivity state dp, and
the feedback from the reactor temperature states. Also
e U, M, a;, and @, are not constants but rather a
function of the equilibrium power level n,,. Equation (14)
shows the dependence of these variables on n,, [15]:

160
p(ny) = (—9—n,0 + 54.022) MWs/°C (14a)
5
Qln,,) = (gn,o + 4.9333) MW /°C (14b)
M(n,) = (28.0n,, + 74.0) MW/°C (14c)
Sk
a;(n,y) = (n,y—4.24) X 1073 —E—/°C (14d)
8k
a,(n,y) = (—4.0n,y — 17.3) X 10~5 — /°C, (14e)

k
where n,, is the equilibrium power level at ¢ = 0.

B. Fuzzy Logic Controller

The state estimator provides temperature feedback to
the fuzzy logic controller which is designed to improve
reactor temperature performance in a manner similar to
a dynamical model-based controller such as an observer-
based, state-feedback-assisted controller [1]-[3], or an
LQG /LTR robust controller [16].

The power demand signal n, is converted to an exit
temperature demand (7),) signal by using the steady-state
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version of (13):

Pyn,
- +T.
The normalized error E(k) is then:
E(k) = (T(k) - T,)/T,, if T, > 7T,(0)  (16a)
E(k) = (T, - T,(0))/T(®, if T, <T,0), (16b)

where f", is the observer estimate of the exit temperature
T,. The change in error DE(k) is

DE(k) = E(k) — E(k - 1). )]

The desired output ¢’ is equal to the external power
demand signal. Therefore, the fuzzy controller rule base
becomes:

u;=n, +c,Ek) + c,-szE(k)-

C. Reference Model

The reference model for tuning and evaluating the
performance of the fuzzy logic controller is designed
based on an observer-based state-feedback-assisted con-
troller [1]-[3]. The observer-based state-feedback-assisted
controller is based on one-delay neutron group parame-
ters (G = 1, B = 0.006019, A = 0.150) and applied to the
six-delayed neutron group (G = 6) reactor simulation
listed in Table 1. The time-invariant state feedback gain
which achieves an improved reactor temperature response
was taken from [17]. This reference model is chosen for
illustration purpose to demonstrate the automatic tuning
method (ATM). However, any reference model can be
selected to generate desired response and provide data
for the ATM.

D. Tuning of Fuzzy Logic Controller

To estimate the unknown parameters for the conse-
quent of each rule, the fuzzy logic controller and the
ATM were simulated in parallel with the reference model.
The non-zero measures of the membership functions of
the fuzzy logic controller (Fig. 3) were used to identify the
rules that were applicable at any given instant. The refer-
ence model provided the desired output d(k) = n (k) at
that instant, and the ATM provided estimates of the
unknown parameters, c/; and c?.

To start the ATM procedure, the plant initial condition
of the unknown parameters were assumed to be equal to
zero. The simulation was performed for +10% step
changes in the input demand signal (n,). Simulations
were carried out for several cases of initial conditions
and for several different values of controller sampling
intervals.

V. RESULTS AND DISCUSSION

An observer-based state feedback optimal controller
[1]-[3] was previously designed to achieve improved
temperature performance for a wide range of operating
conditions using a relatively simple low order time-
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TABLE 1
REACTOR MODEL PARAMETERS
Parameters Values Parameters Values
A 3.15 By 0.0002940
Ay 1.19 B 0.0008049
A3 0.3125 Bs 0.002765
A, 0.1165 Bs 0.0011405
As 0.0317 Bs 0.001257
Ag 0.0127 Be 0.0001745
A 20x107° Ky 263
P, 2500 T,0 290
Iy 0.92

invariant controller. The design objective of the fuzzy
logic controller was to similarly achieve improved wide-
range temperature performance. This section presents the
evaluation of a fuzzy logic controller to meet this goal.

For the purpose of tuning and testing the fuzzy logic
controller, the operation of the reactor was divided into
nine regions based on the percent rod worth (of the
nominal value 0.0145 = 100%) and the full power range
as illustrated in Fig. 4. The robust optimal controller
designed at full power with nominal plant parameters
(Region 6) was used to generate the reference model
response [1], [3]. The parameters (c,-‘,-, c,-zj) in the rule base
of the fuzzy logic controller were estimated (tuned) using
the reference model response to transients in Region 6.

The transients in these regions that were used for
tuning the fuzzy logic controller consisted of +10% step
changes in power demand from the nominal 100% power.
The parameters estimated by the ATM are summarized in
Table II. To evaluate the performance of the resulting
controller, it was then subjected to the following four
groups of tests:

Case A: Local Control
1. 100% — 90% — 100% power level change in
Region 6.
Case B: Global Operation
1. 40% — 50% — 40% power level change in Region
1.
2. 20% — 10% — 20% power level change in Region
2.
Case C: Emergency Operation
1. 100% — 25% huge step down from Region 5 to
Region 3.
Case D: Shut-down /Start-up
1. 100% — 10% ramp down from Region 5 to Region
3, followed by a 10% — 100% ramp up with 15%
per minute rate.

The tests above were conducted using the reactor model
described in Section IV. The observer gains, rod worths,
and fuzzy controller parameters were kept fixed at the
values for which the controller was tuned, (i.e., in Region
6) while conducting these tests. In each case the per-
formance of the fuzzy controller is compared with the
performance of the optimal controller designed for the
same reactor model [2]. The optimal controller’s observer
and feedback gains were also kept fixed at the values
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Fig. 4. The nine regions of reactor operation.

TABLE 11
ESTIMATED PARAMETERS FOR RULE;;

1 2

i J Cij Cij

1 1 —14.15933 —13.54221

1 2 —8.544655 —24.15133

1 3 —6.055618 —26.03189

1 4 0.0000000 0.0000000
1 5 —0.2768038 0.5536076
2 1 —-17.31362 —11.79659

2 2 —8.087297 —23.53640

2 3 —4.705722 —24.54666

2 4 0.0000000 0.0000000
2 5 —0.2768038 0.5536076
3 1 0.0000000 0.0000000
3 2 —15.16420 —13.17804

3 3 —15.16420 —13.17804

3 4 0.0000000 0.0000000
3 5 0.0000000 0.0000000
4 1 —16.14068 0.3889777
4 2 —34.63131 —19.88403

4 3 —-6.911923 6.517233
4 4 0.0000000 0.0000000
4 5 0.0277524 0.5550497
5 1 —16.14068 0.3889777
5 2 —35.12094 —20.36247

5 3 —5.204771 4.770062
5 4 0.0000000 0.0000000
5 5 —0.0275841 —0.5516833

designed for Region 6 because these were considered to
give the best overall performance when the controller was
applied in other regions [3].

A. Local Control

Fig. 5 compares the optimal controller and the fuzzy
logic controller responses near their design point (Region
6) for a 100% — 90% — 100% power level demand tran-
sient. The plots show the reactor exit temperature, reactor
power output, and the control rod speed.

From Fig. 5(a) and (b) it is evident that the fuzzy logic
controller performs as well as the optimal controller. The
desired temperature is reached quickly and with no over-
shoot. For the comparable performance, the fuzzy logic
controller shows smoother control rod speed compared
with the optimal controller response. It should be noted
that the fuzzy logic controller uses only the tempera-
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Fig. 5. Case A: Local control 100% — 90% — 100% power level
change in region 6. (a) Optimal controller. (b) Fuzzy logic controller.

ture estimate, while the optimal controller uses full state
feedback.

B. Global Operation

Figs. 6 and 7 illustrate the robustness characteristics to
parameter uncertainty resulting from global operation.
Both the fuzzy logic controller tuned in Region 6 and the
optimal controller designed for Region 6 are tested in
other regions to see the applicability for global operation.

From the results of these experiments, it is evident that
the fuzzy logic controller performs as well as the optimal
controller in all regions. Both the optimal and the fuzzy
controller perform best in the high power region (Fig. 5)
as compared to the low power region (Fig. 7). Although
not shown here, regions with higher percent rod worth
showed comparable responses with faster temperature
responses. Again, in this case the fuzzy logic controller
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Fig. 6. Case BI1: Global operation 40% — 50% — 40% power level
change in region 1. (a) Optimal controller. (b) Fuzzy logic controller.

showed smoother control rod speed compared to the
optimal controller response.

C. Emergency Operation

This case represents the most stressed operation. In
this test the system was operating in Region 5 (full power
of 100%, and the rod worth of 0.0290 = 200% of the
nominal value), and the input demand signal to the system
is a large step change from 100% — 25%. The perfor-
mance of the fuzzy logic controller is compared to the
performance of the optimal controller which is illustrated
in Fig. 8.

The fuzzy logic controller reaches the desired steady-
state value of the temperature much faster than does the
optimal controller. However, the fuzzy logic controller
causes a noticeable overshoot. The reactor power and the
control rod speed also show more overshoot. This is partly
because the fuzzy logic controller uses only temperature
feedback, while the optimal controller uses full state feed-
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Fig. 7. Case B2: Global operation for 20% — 10% — 20% power level
change in region 2. (a) Optimal controller. (b) Fuzzy logic controller.

back. The advantage of the fuzzy logic controller in han-
dling nonlinearities is not fully demonstrated in this case
since it is not tuned over a wide range of operating
conditions.

D. Shut-down / Start-up

This case mimics the beginning of shut-down/the end
of start-up operation with a relatively fast ramp, 15% per
minute. In this test the system is operating in Region 5
(full power of 100%, the rod worth of 0.0290 = 200% of
the nominal value), and the input demand signal to the
system is a fast ramp from 100% — 10% — 100%. The
performance of the fuzzy logic controller is compared with
the optimal controller’s in Fig. 9.

The difference in the performance of the fuzzy logic
controller and the optimal controller is not very distinct,
except at certain transition points in the input demand
signal. These transition points are located at the 30, 390,
510, and 870 second marks. While the difference is nil at
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the 30, and 870 second marks, there is noticeable differ-
ence at the 390 and 510 s marks. This difference is in
the rod speed z, for the fuzzy logic controller, which is
higher than that of the optimal controller. In this case,
however, the system with the fuzzy controller tracks
the input demand signal much more closely throughout
these transition points than the system with the optimal
controller.

E. Summary of Evaluation Tests

In the simulation evaluation, the fuzzy logic controller
is applied to higher order non-linear simulation of the
reactor modeled with six delayed neutron groups and
compared with the optimal controller responses. In all
cases the fuzzy logic controller demonstrates good robust-
ness for the range of uncertainties considered: 1) power
level variations of a factor of ten, 2) control rod worth
variation of a factor of four, 3) application to a high order
plant (6 delayed neutron groups), and 4) application to a
nonlinear plant. As indicated in Fig. 5(b), the fuzzy logic
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Fig. 9. Case D: Start-up/shut-down from region 5 for 100% — 10% —
100% power level change with 15% ramp. (a) Optimal controller. (b)
Fuzzy logic controller.

controller also achieves its best performance at its design
power of 100%. At low power, far from the design point
of 100% power, the optimal controller’s improved tem-
perature response is not as dramatic. The fuzzy logic
controller on the other hand, accomplishes a faster tem-
perature response at low power but with some noticeable
temperature overshoots.

The optimal controller’s acceptable performance and
stability robustness over the power range of 10 to 100%
with expected plant parameter variations have also been
reported [2]-[3]. Although it maintains good stability
robustness over the complete power range, improved
temperature performance is not as dramatic if the opera-
tion is far from the design condition (e.g., at 10% power).
Because reactor fuel temperatures are closer to their
design limits at full power, it is considered more impor- -
tant for a controller to maintain tighter control of the
reactor temperature at the full power condition. Hence,
the design of a time-invariant fuzzy logic controller with
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desirable stability and performance robustness has been
found to be best conducted at the 100% power and
nominal plant parameters (Region 6).

Fuzzy logic originally developed by Zadeh [4] is to allow
the processing of linguistic variables by machines. The
technique is very useful for nonlinear systems because
a linguistic rule can allow for a non-linearity whereas a

linearized model-based controller cannot. This advantage,

however, is not fully demonstrated. To reflect the nonlin-
earity caused by different operating points, the rule base
needs to be expanded to include operating points in terms
of power level and the control rod worth. This will increase
the number of rules considerably (from twenty five for
one region to two hundred and twenty five rules for all
nine regions).

Since the primary objective of this paper is to demon-
strate the automatic tuning method, the fuzzy logic con-
troller is tuned only for Region 6, which is the full power
and average control rod worth. The fuzzy logic controller
designed this way, however, shows the robustness property
when it is applied to all other regions and its performance
is comparable with the optimal controller responses. Since
the fuzzy logic controller is tuned at its design power, it
works best at the full power. However, when a more
general rule base is used by including different operating
regions, the fuzzy logic controller would function better at
all power levels.

The fuzzy logic controller performs just as well as
the optimal controller inspite of the fact that the fuzzy
logic controller uses only the temperature estimate for
feedback, while the optimal controller uses full state feed-
back. Another interesting point to note is that a rule
whose consequent is (10), may be viewed as a classical
proportional-derivative (P-D) controller with an offset.
However, the output of a fuzzy logic controller utilizing
rules like these in its rule base, may be viewed as the
weighted average of twenty five P-D controllers as shown
in (9).

V1. CONCLUSIONS

The design and evaluation of an automatically-tuned
fuzzy logic controller for improving reactor temperature
performance in a robust manner has been detailed. The
unique aspect of this controller is that it uses an observer
estimate of the reactor temperature as the primary feed-
back signal rather than the full state feedback. Further-
more, a simplified method for automatically tuning the
fuzzy logic controller’s critical parameters to achieve
desirable reactor temperature response, has also been
presented. The robust performance of the fuzzy logic
controller was demonstrated for a wide range of reactor
operations, over the power range of 10-100% and with
significant plant parameter variations.
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The fuzzy logic controller robustness is comparable to
a model-based state-feedback optimal controller when
the plant output is assumed measured with certainty.
However, the true efficacy of the fuzzy logic controller
is probably for the case when there is considerable
uncertainty in the plant output due to sensor failure or
extreme plant uncertainty (severe faults). In this case, the
fuzzy and/or neural network description and control
of the process may be better suited than the utilization of
model-based controller operating on assumed precise plant
outputs [18].
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